Carbon monoxide releasing molecule-2 inhibits pancreatic stellate cell proliferation by activating p38 mitogen-activated protein kinase/heme oxygenase-1 signaling.
نویسندگان
چکیده
Proliferation of pancreatic stellate cells (PSCs) plays a cardinal role during fibrosis development. Therefore, the suppression of PSC growth represents a therapeutic option for the treatment of pancreatic fibrosis. It has been shown that up-regulation of the enzyme heme oxygenase-1 (HO-1) could exert antiproliferative effects on PSCs, but no information is available on the possible role of carbon monoxide (CO), a catalytic byproduct of the HO metabolism, in this process. In the present study, we have examined the effect of CO releasing molecule-2 (CORM-2) liberated CO on PSC proliferation and have elucidated the mechanisms involved. Using primary rat PSCs, we found that CORM-2 inhibited PSC proliferation at nontoxic concentrations by arresting cells at the G(0)/G(1) phase of the cell cycle. This effect was associated with activation of p38 mitogen-activated protein kinase (MAPK) signaling, induction of HO-1 protein, and up-regulation of the cell cycle inhibitor p21(Waf1/Cip1). The p38 MAPK inhibitor 4-(4-flurophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)imidazole (SB203580) abolished the inhibitory effect of CORM-2 on PSC proliferation and prevented both CORM-2-induced HO-1 and p21(Waf1/Cip1) up-regulation. Treatment with tin protoporphyrin IX, an HO inhibitor, or transfection of HO-1 small interfering RNA abolished the inductive effect of CORM-2 on p21(Waf1/Cip1) and reversed the suppressive effect of CORM-2 on PSC growth. The ability of CORM-2 to induce cell cycle arrest was abrogated in p21(Waf1/Cip1)-silenced cells. Taken together, our results suggest that CORM-2 inhibits PSC proliferation by activation of the p38/HO-1 pathway. These findings may indicate a therapeutic potential of CO carriers in the treatment of pancreatic fibrosis.
منابع مشابه
Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis
Heme oxygenase 1 (HO-1) inhibits apoptosis by regulating cellular prooxidant iron. We now show that there is an additional mechanism by which HO-1 inhibits apoptosis, namely by generating the gaseous molecule carbon monoxide (CO). Overexpression of HO-1, or induction of HO-1 expression by heme, protects endothelial cells (ECs) from apoptosis. When HO-1 enzymatic activity is blocked by tin proto...
متن کاملCarbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress.
Carbon monoxide (CO), a reaction product of the cytoprotective heme oxygenase (HO)-1, is antiapoptotic in a variety of models of cellular injury, but the precise mechanisms remain to be established. In human umbilical vein endothelial cells, exogenous CO activated Nrf2 through the phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK), resulting in HO-1 expression. CO-indu...
متن کاملNox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis.
We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4...
متن کاملMechanism(s) Involved in Carbon Monoxide-releasing Molecule-2-mediated Cardioprotection During Ischaemia-reperfusion Injury in Isolated Rat Heart
The purpose of the present study was to determine the mechanism(s) involved in carbon monoxide-releasing molecule-2, carbon monoxide-releasing molecule-2-induced cardioprotection. We used the transition metal carbonyl compound carbon monoxide-releasing molecule-2 that can act as carbon monoxide donor in cardiac ischaemia-reperfusion injury model using isolated rat heart preparation. Langendorff...
متن کاملHeme Oxygenase-1 Induction by Carbon Monoxide Releasing Molecule-3 Suppresses Interleukin-1β-Mediated Neuroinflammation
Neurodegenerative disorders and brain damage are initiated by excessive production of reactive oxygen species (ROS), which leads to tissue injury, cellular death and inflammation. In cellular anti-oxidant systems, heme oxygenase-1 (HO-1) is an oxidative-sensor protein induced by ROS generation or carbon monoxide (CO) release. CO releasing molecules (CORMs), including CORM-3, exert anti-oxidant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 77 4 شماره
صفحات -
تاریخ انتشار 2010